3.115 \(\int \frac{(a+i a \tan (c+d x)) (A+B \tan (c+d x))}{\sqrt{\tan (c+d x)}} \, dx\)

Optimal. Leaf size=55 \[ \frac{2 i a B \sqrt{\tan (c+d x)}}{d}-\frac{2 \sqrt [4]{-1} a (A-i B) \tan ^{-1}\left ((-1)^{3/4} \sqrt{\tan (c+d x)}\right )}{d} \]

[Out]

(-2*(-1)^(1/4)*a*(A - I*B)*ArcTan[(-1)^(3/4)*Sqrt[Tan[c + d*x]]])/d + ((2*I)*a*B*Sqrt[Tan[c + d*x]])/d

________________________________________________________________________________________

Rubi [A]  time = 0.0903108, antiderivative size = 55, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 34, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.088, Rules used = {3592, 3533, 205} \[ \frac{2 i a B \sqrt{\tan (c+d x)}}{d}-\frac{2 \sqrt [4]{-1} a (A-i B) \tan ^{-1}\left ((-1)^{3/4} \sqrt{\tan (c+d x)}\right )}{d} \]

Antiderivative was successfully verified.

[In]

Int[((a + I*a*Tan[c + d*x])*(A + B*Tan[c + d*x]))/Sqrt[Tan[c + d*x]],x]

[Out]

(-2*(-1)^(1/4)*a*(A - I*B)*ArcTan[(-1)^(3/4)*Sqrt[Tan[c + d*x]]])/d + ((2*I)*a*B*Sqrt[Tan[c + d*x]])/d

Rule 3592

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(
e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[(B*d*(a + b*Tan[e + f*x])^(m + 1))/(b*f*(m + 1)), x] + Int[(a + b*Tan[e
 + f*x])^m*Simp[A*c - B*d + (B*c + A*d)*Tan[e + f*x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b
*c - a*d, 0] &&  !LeQ[m, -1]

Rule 3533

Int[((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)])/Sqrt[(b_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[(2*c^2)/f, S
ubst[Int[1/(b*c - d*x^2), x], x, Sqrt[b*Tan[e + f*x]]], x] /; FreeQ[{b, c, d, e, f}, x] && EqQ[c^2 + d^2, 0]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rubi steps

\begin{align*} \int \frac{(a+i a \tan (c+d x)) (A+B \tan (c+d x))}{\sqrt{\tan (c+d x)}} \, dx &=\frac{2 i a B \sqrt{\tan (c+d x)}}{d}+\int \frac{a (A-i B)+a (i A+B) \tan (c+d x)}{\sqrt{\tan (c+d x)}} \, dx\\ &=\frac{2 i a B \sqrt{\tan (c+d x)}}{d}+\frac{\left (2 a^2 (A-i B)^2\right ) \operatorname{Subst}\left (\int \frac{1}{a (A-i B)-a (i A+B) x^2} \, dx,x,\sqrt{\tan (c+d x)}\right )}{d}\\ &=-\frac{2 \sqrt [4]{-1} a (A-i B) \tan ^{-1}\left ((-1)^{3/4} \sqrt{\tan (c+d x)}\right )}{d}+\frac{2 i a B \sqrt{\tan (c+d x)}}{d}\\ \end{align*}

Mathematica [A]  time = 1.52984, size = 92, normalized size = 1.67 \[ \frac{2 a \sqrt{\tan (c+d x)} \left ((A-i B) \tanh ^{-1}\left (\sqrt{\frac{-1+e^{2 i (c+d x)}}{1+e^{2 i (c+d x)}}}\right )+i B \sqrt{i \tan (c+d x)}\right )}{d \sqrt{i \tan (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[((a + I*a*Tan[c + d*x])*(A + B*Tan[c + d*x]))/Sqrt[Tan[c + d*x]],x]

[Out]

(2*a*((A - I*B)*ArcTanh[Sqrt[(-1 + E^((2*I)*(c + d*x)))/(1 + E^((2*I)*(c + d*x)))]] + I*B*Sqrt[I*Tan[c + d*x]]
)*Sqrt[Tan[c + d*x]])/(d*Sqrt[I*Tan[c + d*x]])

________________________________________________________________________________________

Maple [B]  time = 0.012, size = 444, normalized size = 8.1 \begin{align*}{\frac{2\,iaB}{d}\sqrt{\tan \left ( dx+c \right ) }}-{\frac{{\frac{i}{2}}aB\sqrt{2}}{d}\arctan \left ( 1+\sqrt{2}\sqrt{\tan \left ( dx+c \right ) } \right ) }-{\frac{{\frac{i}{2}}aB\sqrt{2}}{d}\arctan \left ( -1+\sqrt{2}\sqrt{\tan \left ( dx+c \right ) } \right ) }-{\frac{{\frac{i}{4}}aB\sqrt{2}}{d}\ln \left ({ \left ( 1+\sqrt{2}\sqrt{\tan \left ( dx+c \right ) }+\tan \left ( dx+c \right ) \right ) \left ( 1-\sqrt{2}\sqrt{\tan \left ( dx+c \right ) }+\tan \left ( dx+c \right ) \right ) ^{-1}} \right ) }+{\frac{Aa\sqrt{2}}{2\,d}\arctan \left ( 1+\sqrt{2}\sqrt{\tan \left ( dx+c \right ) } \right ) }+{\frac{Aa\sqrt{2}}{2\,d}\arctan \left ( -1+\sqrt{2}\sqrt{\tan \left ( dx+c \right ) } \right ) }+{\frac{Aa\sqrt{2}}{4\,d}\ln \left ({ \left ( 1+\sqrt{2}\sqrt{\tan \left ( dx+c \right ) }+\tan \left ( dx+c \right ) \right ) \left ( 1-\sqrt{2}\sqrt{\tan \left ( dx+c \right ) }+\tan \left ( dx+c \right ) \right ) ^{-1}} \right ) }+{\frac{{\frac{i}{4}}aA\sqrt{2}}{d}\ln \left ({ \left ( 1-\sqrt{2}\sqrt{\tan \left ( dx+c \right ) }+\tan \left ( dx+c \right ) \right ) \left ( 1+\sqrt{2}\sqrt{\tan \left ( dx+c \right ) }+\tan \left ( dx+c \right ) \right ) ^{-1}} \right ) }+{\frac{{\frac{i}{2}}aA\sqrt{2}}{d}\arctan \left ( 1+\sqrt{2}\sqrt{\tan \left ( dx+c \right ) } \right ) }+{\frac{{\frac{i}{2}}aA\sqrt{2}}{d}\arctan \left ( -1+\sqrt{2}\sqrt{\tan \left ( dx+c \right ) } \right ) }+{\frac{aB\sqrt{2}}{4\,d}\ln \left ({ \left ( 1-\sqrt{2}\sqrt{\tan \left ( dx+c \right ) }+\tan \left ( dx+c \right ) \right ) \left ( 1+\sqrt{2}\sqrt{\tan \left ( dx+c \right ) }+\tan \left ( dx+c \right ) \right ) ^{-1}} \right ) }+{\frac{aB\sqrt{2}}{2\,d}\arctan \left ( 1+\sqrt{2}\sqrt{\tan \left ( dx+c \right ) } \right ) }+{\frac{aB\sqrt{2}}{2\,d}\arctan \left ( -1+\sqrt{2}\sqrt{\tan \left ( dx+c \right ) } \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+I*a*tan(d*x+c))*(A+B*tan(d*x+c))/tan(d*x+c)^(1/2),x)

[Out]

2*I*a*B*tan(d*x+c)^(1/2)/d-1/2*I/d*a*B*2^(1/2)*arctan(1+2^(1/2)*tan(d*x+c)^(1/2))-1/2*I/d*a*B*arctan(-1+2^(1/2
)*tan(d*x+c)^(1/2))*2^(1/2)-1/4*I/d*a*B*2^(1/2)*ln((1+2^(1/2)*tan(d*x+c)^(1/2)+tan(d*x+c))/(1-2^(1/2)*tan(d*x+
c)^(1/2)+tan(d*x+c)))+1/2/d*a*A*arctan(1+2^(1/2)*tan(d*x+c)^(1/2))*2^(1/2)+1/2/d*a*A*arctan(-1+2^(1/2)*tan(d*x
+c)^(1/2))*2^(1/2)+1/4/d*a*A*2^(1/2)*ln((1+2^(1/2)*tan(d*x+c)^(1/2)+tan(d*x+c))/(1-2^(1/2)*tan(d*x+c)^(1/2)+ta
n(d*x+c)))+1/4*I/d*a*A*ln((1-2^(1/2)*tan(d*x+c)^(1/2)+tan(d*x+c))/(1+2^(1/2)*tan(d*x+c)^(1/2)+tan(d*x+c)))*2^(
1/2)+1/2*I/d*a*A*arctan(1+2^(1/2)*tan(d*x+c)^(1/2))*2^(1/2)+1/2*I/d*a*A*arctan(-1+2^(1/2)*tan(d*x+c)^(1/2))*2^
(1/2)+1/4/d*a*B*2^(1/2)*ln((1-2^(1/2)*tan(d*x+c)^(1/2)+tan(d*x+c))/(1+2^(1/2)*tan(d*x+c)^(1/2)+tan(d*x+c)))+1/
2/d*a*B*arctan(1+2^(1/2)*tan(d*x+c)^(1/2))*2^(1/2)+1/2/d*a*B*arctan(-1+2^(1/2)*tan(d*x+c)^(1/2))*2^(1/2)

________________________________________________________________________________________

Maxima [B]  time = 1.80595, size = 204, normalized size = 3.71 \begin{align*} -\frac{-8 i \, B a \sqrt{\tan \left (d x + c\right )} +{\left (2 \, \sqrt{2}{\left (-\left (i + 1\right ) \, A + \left (i - 1\right ) \, B\right )} \arctan \left (\frac{1}{2} \, \sqrt{2}{\left (\sqrt{2} + 2 \, \sqrt{\tan \left (d x + c\right )}\right )}\right ) + 2 \, \sqrt{2}{\left (-\left (i + 1\right ) \, A + \left (i - 1\right ) \, B\right )} \arctan \left (-\frac{1}{2} \, \sqrt{2}{\left (\sqrt{2} - 2 \, \sqrt{\tan \left (d x + c\right )}\right )}\right ) + \sqrt{2}{\left (\left (i - 1\right ) \, A + \left (i + 1\right ) \, B\right )} \log \left (\sqrt{2} \sqrt{\tan \left (d x + c\right )} + \tan \left (d x + c\right ) + 1\right ) - \sqrt{2}{\left (\left (i - 1\right ) \, A + \left (i + 1\right ) \, B\right )} \log \left (-\sqrt{2} \sqrt{\tan \left (d x + c\right )} + \tan \left (d x + c\right ) + 1\right )\right )} a}{4 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+I*a*tan(d*x+c))*(A+B*tan(d*x+c))/tan(d*x+c)^(1/2),x, algorithm="maxima")

[Out]

-1/4*(-8*I*B*a*sqrt(tan(d*x + c)) + (2*sqrt(2)*(-(I + 1)*A + (I - 1)*B)*arctan(1/2*sqrt(2)*(sqrt(2) + 2*sqrt(t
an(d*x + c)))) + 2*sqrt(2)*(-(I + 1)*A + (I - 1)*B)*arctan(-1/2*sqrt(2)*(sqrt(2) - 2*sqrt(tan(d*x + c)))) + sq
rt(2)*((I - 1)*A + (I + 1)*B)*log(sqrt(2)*sqrt(tan(d*x + c)) + tan(d*x + c) + 1) - sqrt(2)*((I - 1)*A + (I + 1
)*B)*log(-sqrt(2)*sqrt(tan(d*x + c)) + tan(d*x + c) + 1))*a)/d

________________________________________________________________________________________

Fricas [B]  time = 1.75417, size = 811, normalized size = 14.75 \begin{align*} \frac{8 i \, B a \sqrt{\frac{-i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} + \sqrt{\frac{{\left (-4 i \, A^{2} - 8 \, A B + 4 i \, B^{2}\right )} a^{2}}{d^{2}}} d \log \left (\frac{{\left (2 \,{\left (A - i \, B\right )} a e^{\left (2 i \, d x + 2 i \, c\right )} +{\left (i \, d e^{\left (2 i \, d x + 2 i \, c\right )} + i \, d\right )} \sqrt{\frac{{\left (-4 i \, A^{2} - 8 \, A B + 4 i \, B^{2}\right )} a^{2}}{d^{2}}} \sqrt{\frac{-i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}}\right )} e^{\left (-2 i \, d x - 2 i \, c\right )}}{{\left (i \, A + B\right )} a}\right ) - \sqrt{\frac{{\left (-4 i \, A^{2} - 8 \, A B + 4 i \, B^{2}\right )} a^{2}}{d^{2}}} d \log \left (\frac{{\left (2 \,{\left (A - i \, B\right )} a e^{\left (2 i \, d x + 2 i \, c\right )} +{\left (-i \, d e^{\left (2 i \, d x + 2 i \, c\right )} - i \, d\right )} \sqrt{\frac{{\left (-4 i \, A^{2} - 8 \, A B + 4 i \, B^{2}\right )} a^{2}}{d^{2}}} \sqrt{\frac{-i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}}\right )} e^{\left (-2 i \, d x - 2 i \, c\right )}}{{\left (i \, A + B\right )} a}\right )}{4 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+I*a*tan(d*x+c))*(A+B*tan(d*x+c))/tan(d*x+c)^(1/2),x, algorithm="fricas")

[Out]

1/4*(8*I*B*a*sqrt((-I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) + 1)) + sqrt((-4*I*A^2 - 8*A*B + 4*I*B^2)*
a^2/d^2)*d*log((2*(A - I*B)*a*e^(2*I*d*x + 2*I*c) + (I*d*e^(2*I*d*x + 2*I*c) + I*d)*sqrt((-4*I*A^2 - 8*A*B + 4
*I*B^2)*a^2/d^2)*sqrt((-I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) + 1)))*e^(-2*I*d*x - 2*I*c)/((I*A + B)
*a)) - sqrt((-4*I*A^2 - 8*A*B + 4*I*B^2)*a^2/d^2)*d*log((2*(A - I*B)*a*e^(2*I*d*x + 2*I*c) + (-I*d*e^(2*I*d*x
+ 2*I*c) - I*d)*sqrt((-4*I*A^2 - 8*A*B + 4*I*B^2)*a^2/d^2)*sqrt((-I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I
*c) + 1)))*e^(-2*I*d*x - 2*I*c)/((I*A + B)*a)))/d

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} a \left (\int \frac{A}{\sqrt{\tan{\left (c + d x \right )}}}\, dx + \int B \sqrt{\tan{\left (c + d x \right )}}\, dx + \int i A \sqrt{\tan{\left (c + d x \right )}}\, dx + \int i B \tan ^{\frac{3}{2}}{\left (c + d x \right )}\, dx\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+I*a*tan(d*x+c))*(A+B*tan(d*x+c))/tan(d*x+c)**(1/2),x)

[Out]

a*(Integral(A/sqrt(tan(c + d*x)), x) + Integral(B*sqrt(tan(c + d*x)), x) + Integral(I*A*sqrt(tan(c + d*x)), x)
 + Integral(I*B*tan(c + d*x)**(3/2), x))

________________________________________________________________________________________

Giac [A]  time = 1.24972, size = 63, normalized size = 1.15 \begin{align*} \frac{\left (i - 1\right ) \, \sqrt{2}{\left (-i \, A a - B a\right )} \arctan \left (-\left (\frac{1}{2} i - \frac{1}{2}\right ) \, \sqrt{2} \sqrt{\tan \left (d x + c\right )}\right )}{d} + \frac{2 i \, B a \sqrt{\tan \left (d x + c\right )}}{d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+I*a*tan(d*x+c))*(A+B*tan(d*x+c))/tan(d*x+c)^(1/2),x, algorithm="giac")

[Out]

(I - 1)*sqrt(2)*(-I*A*a - B*a)*arctan(-(1/2*I - 1/2)*sqrt(2)*sqrt(tan(d*x + c)))/d + 2*I*B*a*sqrt(tan(d*x + c)
)/d